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S U M M A R Y  
A very general solution is given of a problem which plays a vital role in certain molecular theories on the deformation 
of macromoIecules. In these theories use is made of the necklace model, in which the macromolecule in solution is 
supposed to be built up of submolecules or segments. The total hydrodynamic resistance of the monomers  in a segment 
is assumed to be concentrated in the end points of the segments:  the beads. By applying a macroscopic field ,~f flow 
to the solution, forces are exerted on the beads which are compensated by entropy-elastic forces in the segrrent. The 
configuration of the beads is described by a distribution function which must  satisfy an equation of continuity. This 
equation is now solved by means  of Fourier transformation for any t ime-dependent field of flow for which the velocities 
are linear functions of the coordinates. The solution appears to be a Gaussian distribution whose second moments  
have to satisfy a system of linear first-order t ime-dependent differential equations. Once the distribution function is 
known, all kinds of macroscopically measurable quantities of the solution can in principle be calculated. 

1. The Necklace Model 

In the necklace model of a linear macromolecule in solution, developed on the basis of Kuhn's 
[1] work, the molecule is assumed to be split up into submolecules (segments or links). These 
segments constitute the connections between "beads" in which the hydrodynamic resistance 
of the monomers of a segment is supposed to be concentrated. Part of the chain model used is 
represented in the figure below : 

7 

The length of a segment is determined by the configuration of the monomers within this 
segment. This length is taken to be a stochastic variable. In principle, the number of monomers 
comprised in one segment can still be chosen freely; it is assumed that this number is in any 
case such that the segments can rotate freely with respect to one another. (The beads do not 
accept moments). 

Also the position of the centre of gravity of the beads is assumed to be a stochastic variable. 
It is further assumed that as long as no external forces act on the solution, the three following 
conditions are met: 

(1) the length of a segment can be described by a Gaussian distribution function; 
(2) the length of the various segments and the position of the centre of gravity are sto- 

chastically independent ; 
(3) the centres of gravity of the macromolecules are homogeneously distributed over the 

solution. 
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Let us assume that the above conditions can be met by dividing the macromolecule into n 
segments, which constitute the links between n + 1 beads. The configuration of the macro- 
molecule can then be described as follows. 

A system of cartesian coordinates is introduced, in which %, rl, r 2 . . . .  r, are the position 
vectors of the beads. Let R be a rectangular matrix of n + 1 rows and 3 columns, which contains 
the vectors r T as rows. The matrix R then completely defines the configuration of the macro- 
molecule. 

The configuration can also be defined by giving the dimensionless position of the centre of 
gravity of the beads and the n dimensionless position differences of the beads as follows. 

Let 3b 2 be the mean square of the segment lengths if no forces are exerted on the solution*. 
Now define 

i=o (1.1) 
SO-- b 

rk--rk-1 for k = l ,  2 , . . . n .  (1.2) 
S k - -  b 

T T T Let S be a rectangular matrix ofn + 1 rows and 3 columns, which contains the vectors So, s 1 . . . .  s, 
as rows. Also by giving the matrix S, the configuration of the macromolecule is completely 
determined. Between S and R there is a unique relation, given by 

1 
S = ~ aR (1.3) 

in which a is a square (n + 1) x (n + 1) matrix of the following form" 

1 1 1 1 . . .  1 1- 

- 1  1 0 0 . . .  0 0 

a =  0 - 1  1 0 . . .  0 0 

0 0 - 1  1 . . .  0 0 (1.4) 

6 0  6 6 . - i i  
The elements of this matrix are called aik with i and k = 0, 1, 2 . . . .  n. The possible configurahons 
of macromolecules are described by a distribution function of the stochastic variables R or S. 
This distribution function is called 0. If no external forces are exerted on the solution, the con- 
ditions of Gaussian distribution, independence and homogeneity of centres of gravity, for- 
mulated above, are applicable. The special distribution function satisfying these conditions is 
called 4. In the absence of external forces we can therefore put 0 = 4- 

On the basis of the foregoing we must have : 

1 
4 - (27@,/2 exp ( -  �89 r :/o S). (1.5) 

The expression S r : I o S indicates'  the sum of the inner products of the rows of the matrix S r 
and the corresponding columns of the matrix I0 S (the so-called direct product). The matrix Io 
is defined as a square (n + 1) • (n + 1) matrix, equal to a unit matrix, with the exception of the 
diagonal element on the row with subscript 0, which equals 0 instead of 1. This matrix occurs 
in Eq. (1.5), because the distribution of the centres of gravity has been assumed to be homo- 
geneous, so that ~b is independent of s o and hence, s o cannot occur in the exponential expression. 

The function ~b has apparently been normalized over the relevant coordinates: 

* This is, if no forces act on the solution, the average value of (r~-r  i i) r ( r  i -  r i 1); the three components  of r~ r~_ 1 
are then supposed all to have an average quadrat ic  length of b 2. This value can be related to the number  of m o n o m e r s  
in one segment and to the m o n o m e r  length. 
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~f ~dloS = 1. 

In 1953/1954 Rouse 1-2] and Bueche [3] gave the first complete description of the necklace 
model of a polymer in a solution subject to simple shear flow. This case will once more be 
treated here, but incorporating extensions of the theory (e.g. hydrodynamic interactions). 
Moreover the distribution function--and not only its moments--will  be calculated for each 
form of time-dependent flow, provided this flow is a linear function of the coordinates. 

2. Forces Acting on the Beads of the Necklace Model 

1. Entropy-Elastic Forces 

If forces are exerted on the solution the distribution function will change and, hence, 0 r qS. 
If we use Wall's formulae [4] to calculate the difference in entropy caused by a change in 

distribution function, and assume that the internal energy of the system remains constant 
when the configuration changes, we have under isothermal conditions : 

/x = k T ( 1  + ln  ~ )  (2.1) 

where # is the thermodynamic potential. 

From this the entropy-elastic force is derived : 

F e _ @ _ a O (2.2) OR kT  ~ In 

where F e is a matrix of n+  1 rows and 3 columns; the rows in this matrix are the entropy- 
elastic forces on the beads of the necklace model. 

2. Friction Forces 

It is assumed that a solution is subject to forces which result in a macroscopic velocity profile in 
the solution. This macroscopic velocity at the location of the beads can be represented by an 
(n+ 1) x 3 matrix Vo, comprising the vectors v~ (k=0,  1, 2, ... n) as rows. If this macroscopic 
velocity were equal to the actual velocity of the solvent at the location of the beads, the forces 
on the beads resulting from friction might be represented by : 

F f = fo(Vo- /~) ,  

where fo is the Stokes friction coefficient. 
For many cases this expression is too simple ; we generalize it therefore to 

F:  = fo B -  I(V 0 - / ~ ) .  (2.3) 

In this expression B is a symmetric, not further specified (n + 1) x (n + 1) matrix. In the Rouse 
[2] theory B is a unit matrix ; in case hydrodynamic interaction is taken into account [5] B is 
equal to I+fo  T, where I is a unit matrix and T is the so-called Oseen [6] tensor. Formula (2.3), 
however, can also take into account: increased friction in certain beads or different friction 
coefficients for all the beads. 

In this treatment the macroscopic field of flow should only meet the condition that the velo- 
cities are linear functions of the coordinates 

Vok = /~  (t) r k . (2.4) 

/~ (t) is here an essentially time-dependent 3 x 3 matr ix with elements 71k. We would stress that 
this formula may serve to describe not only any form of time-dependent shear flow, but also 
for example linear elongational flow. This expression is therefore much more general than the 
usual expressions for the macroscopic field of flow. For  the present purpose we assume a 
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divergence-free flow and therefore put 

trace (F) = 0 .  (2.5) 

For  V o we have" 

Vo = R [  ~r . (2.6) 

3. Equations of Motion 

In developing equations of motion, inertia forces are neglected. 
Assuming balance of forces we have : 

U ' + F  I = O. (3.1) 

Eqs. (2.2) and (2.3) can be substituted in (3.1). In doing so we also introduce the afore-mentioned 
coordinates S according to : 

1 8 la r  8 
S = ~ a R ; s R -  b 8S" 

In addition, we introduce the parameter z, defined by : 

fo b2 
"C - -  

2 k T  " 

This parameter has the dimension of time, and is therefore to be taken as a characteristic time 
constant. Eq. (3.1) can now be formulated as follows: 

_ 12z aBar ~S in ~ + (S/~r-  S )=  0.  (3.2) 

The matrix aBa r is symmetric; this matrix will henceforth be called A with elements Aik 
(i and k = 0, 1, 2 . . . .  n). If B is a unit matrix, as it is in the Rouse theory [2], this matrix A is 
about equal to the so-called Rouse matrix, the only difference being that in our treatment one 
row and one column with subscript 0 are added, for which we have : 

A o k = A i o = O  for i a n d k = l ,  2 . . . .  n; A 0 o = n + l .  

This difference arises because in the Rouse theory the centre of gravity has not been included. 
After substituting the expression for ~b from Eq. (1.5) one can write : 

1 A ~ l n ~ b -  1 = s[~r - 2-~ ,~  ~ AI~ S .  (3.3) 

By transformation this system of 3 x (n + 1) mutually dependent equations can be split up into 
mutually independent equations. For  this purpose the eigenvalues and the eigenvectors of the 
matrix AIo must first be determined. 

The following agreement is now made : a superscript �9 to a matrix indicates that the matrix 
is meant, with the exception of the rows and columns containing a subscript 0, e.g. A* is the 
square n x n matrix formed from A by omitting all the elements Aik with i and/or k = 0. 

A I  o has the following form : 

/o I / 
| :  I A * |  
L61 J 

A o is here a vector consisting of the elements Aol, A02 , Ao> ... Ao,; where matrix B is a unit 
matrix, as in the Rouse theory, A 0 =0.  
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It can be seen at once that one of the eigenvalues of this matrix equals zero ; we call this eigen- 
value %. We define a diagonal matrix N, which contains all the eigenvalues Vo, Vl, v2 . . . .  v, as 
diagonal elements ; N* then contains Vl, v 2 . . . .  v, and thus the eigenvalues of A*. 

The eigenvectors of AI  o satisfy the relation 

AI  o Q = QN (3.4) 

where Q is the matrix consisting of the eigenvectors of A I  o as columns. It can be proved that Q 
is composed as follows: 

Q =|o e* 
k01 

Q* is here the matrix of normalized eigenvectors of A*; hence A* Q * =  Q ' N * .  Since A* is 
symmetric : 

O,T= Q,-,. 

We should stress that although the eigenvectors Q of A I  o are now not normalized, the deter- 
minant of Q is yet equal to 1. 

Q-  1 can be derived from Q and is of the following form : 

e-l=/01 

Now we have: 

Q-  a A I  ~ Q = N . (3.5) 

Besides, it is easy to demonstrate that 

QT io Q = io " (3.6) 

Then we have apparently:  

U = Q - t A I o Q  = Q - 1 A ( Q - 1 ) T Q T I o Q  = Q 1A(Q 1)TI o . (3.7) 

Obviously, Q 1 A ( Q -  1)r is also a diagonal matrix with all the elements equal to N, except the 
element on the row with subscript 0, which is not defined by (3.7). We call this diagonal matrix 
A with elements 20, 21 . . . .  22, for which we then apparently have : 

A* = N * .  (3.8) 

For  2 o we find : 

2 o = A o o - A r Q * N  * 'Q*TA o.  

We now perform the coordinate transformation 

P = Q - 1 S ;  OS = (Q- , )T  . 

P is again an (n+ 1) x 3 matrix with vectors po r, p [  . . . .  p [  as rows. Eq. (3.3) now becomes: 

P = P U -  1--A ~ 1 2z ~ l n O  - 2z N P .  (3.9) 

The matrices A and N are diagonal matrices ; the system of equations has therefore been split 
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up into n + 1 mutually independent equations. The new coordinates P are therefore called 
normal  coordinates [7]. 

The distribution function O(P, t) can now also be written as a product of distribution 
functions @k(Pk, t) (k=O, 1,...  n). 

We then find the following equation : 

1 ~ 1 
tSk = Fpk -- 2z 2k ~ in @k -- ~ VkPk" (3.10) 

The @k should satisfy the normalization conditions 

I ~k(Pk, t)dpk= 1 for k = 0 ,  1,2 . . . .  n .  (3.11) 

As will appear from what follows, Eq. (3.10) contains a characteristic time constant for each k, 
except for k = 0. Therefore we call P0 the coordinates of the translation mode, 0o describing the 
distribution of the translation mode. Any other Ok(Pk, t) describes a different normal mode of 
motion. 

4. Equation of Continuity 

The change with time of the distribution function Ok in a given element dpk is determined by 
the flux of the (Jk across the boundaries of the element dpk. Hence we have the law of continuity 

- (~k~b) for k = 0 ,  1, ... n .  (4.1) 
& apk 

Substitution of (3.10) on the assumption that the macroscopic field of flow is divergence-free 
then gives : 

a@k T " T ~@k ")~k aT a@k Vk ~@k 3Vk - - -  + + pk r + ~b k (4.2) 
~?t Pk F apk 22 apk apk 2z ~Pk 

for k = 0 , 1  . . . .  n. 

5. Equation of Motion for the Centre of Gravity 

From Eq. (4.2) follows the distribution function ~Po for the translation mode : 

a0o _  a0~ + a T 300 (5.1) 
& Pr i~Cpo  2z ?Po apo" 

It can at once be seen that a constant normalized over the P0 space is a solution of (5.1), i.e. the 
distribution of the translation mode is homogeneous. 
For the motion of the translation mode one then finds from equation (3.10): 

Do = /~Po .  (5.2) 

The velocity of the centre of gravity is found by transformation of this equation: 

,~o = ['~o- ([~p,T__ p,T) N , , Q,~ Ao " (5.3) 

The first term of the right-hand member  in (5.3) is exactly the macroscopic velocity in the centre 
of gravity. The second term incorporates all the ve!ocities of all the normal  modes ; this term is 
only zero if A o = 0, which is the case if B = I, hence in the Rouse theory. Only in that case does 
the centre of gravity apparently follow the macroscopic field of flow. The second term of the 
right-hand member  can be calculated accurately if the distribution functions of the normal 
modes are known. 
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6. Distr ibution Funct ion of  N o r m a l  M o d e s  

From Eq. (4.2) follows the differential equation of the distribution function of the normal 
modes (k ~ O, )ok = Vk)" 

We define z k = z/2 k and henceforth omit the subscript, except in z k; rk therefore indicates the 
normal mode to which the equation relates. 

The equation of all the normal modes then is : 

Zk ~t = _ ~kpr [,r c~O~pp O r ~P90 ~pp + 21~pp + 21p r + 10 (6.1) 

with the normalization condition : 

I t~(p, t)d; = 1. (6.2) 

A solution is found after Fourier transformation. An advantage of this transformation is 
moreover that the Fourier transform of 0, or the so-called characteristic function, immediately 
gives the moments of 0. 

We define the Fourier transform 7 ~ (u, t) of ~, (p, t) by : 

~P(u, t) = ~ ~p(p, t) exp(iuT p)dp . (6.3) 

Here u is a vector with three components. 
Eq. (6.1) and the normalization condition (6.2) are transformed to the following equations: 

..Ok ~ TkblTF 1. r .  ,T, 1. r glU (6.4) 

7J(O, t )=  1 (6.5) 

The structure of this first-order partial differential equation suggests that a quadratic function 
may be a solution of the equation. Therefore we apply the method of characteristics and define : 

g(u, t) = c ( t ) -  �89 M (t) u (6.6) 

where M is a symmetric 3 • 3 matrix which-  with respect to the notation anticipating the 
result--is defined as follows : 

[-]1200 #110 ]11017 
M = I # a l o  #020 /~o111. (6.7) 

[_//101 #011 /AO02.J 

Let us now establish which function of g is a solution of the equation. Substitution in (6.4) 
and (6.5) gives' 

l - dc dM T l 2Zk dt + ZkUT dt u+u MU--ZkUT([~M+M['T) u d~  do = ur uTJ (6.8) 

7~(c) = 1. (6.9) 

The equation can be reduced to the very easily solvable equation : 

dhg 
- 7/ (6.10) 

dg 

if only the following conditions are met" 

dc 
= 0 (6.11) 

dt 

dM 
z k ~ + M - Zk([ 'M+MF T) = I (6.12) 
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where I is a 3 x 3 unit matrix. 
Eqs. (6.9), (6.10) and (6.11) can be met by 

7 j = e ~ with c(t) = 0 .  (6.13) 

Therefore we find as solution of 7 j (u, t) 

T(u, t) = exp ( -  �89 (6.14) 

provided Eq. (6.12) is satisfied. 
If the characteristic function is expanded in a Taylor series with respect to u in the neigh- 

bourhood of u = 0, one finds the moments of the distribution function. This implies that the 
elements of M are precisely the second moments of the distribution function. These second 
moments are defined as follows : 

#2o0 = ~ ~21)dP = ( ~ 2 ) ;  ~11o = ~ ~rlOdp = ( ~ t l ) ,  etc ~. 

Reverse transformation of the characteristic function T(u, t) gives the distribution function 
itself; this distribution function appears to be a Gaussian function : 

1 
0(p, t) - (2n) ~ iMla exp ( -  �89 p) (6.15) 

where ]MI is the determinant of M. 
The distribution of the coordinates of the normal modes is therefore a time-dependent 

Gaussian distribution whose second moments satisfy a system of linear first-order differential 
equations. By solving these equations one obtains the moments, with the exception of a con- 
stant which must be determined from the initial conditions. 

The solution given here applies to any form of time-dependent field of flow, provided it is a 
linear function of the coordinates and divergence-free. 

7. Distribution Function in a Special  Case  

By way of illustration, the solution will be given for the case of simple shear flow in one direction 
(e.g. a x-direction) having a time-dependent velocity gradient ~ in a direction normal to it (e.g. 
a y-direction). Let 712 = ~) and all other elements of/~ be equal to zero. 

The differential equations (6.12) now become: 
dfl20o 

Zk dt + /~200--2Zk~)~110 = 1 (7.1a) 

df l l lO  
T k ~ -]- #l lO--"Ck]3P020 ---~ 0 (7.1b) 

d]/101 
Zk d ~ -  + /~1ol = 0 (7.1c) 

d~to2o 
Zk ~ + #020 = 1 (7.1d) 

d ~ o l  1 
Zk ~ + /t011 = 0  (7.1e) 

dfloo2 
~Ck ~ -  -~- ~002 = 1 . (7.10 

As example we take: ~ = q + co) cos cot. This is a simple shear flow with constant gradient q 
with an oscillatory shear of amplitude e superimposed on it. 

Eqs. (7.1) now have the solutions: 
* ~, tl, ( are supposed to be the components  of the vector p. 
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]/002 = #020 -- 1 (7.2a) 
/~101 = #ola = 0 (7.2b) 

COZk [COZk sin cot + cos cot] (7.2c) #110 :"Ckq-[-~ 1+ 2 2 
co T k 

2coz~ q [cork (3 + 09 2 Z~) sin cot + 2 cos cot] + , oo : 1+2 2q +  (1 

c o 2 2 1 1 3 C O Z k Z k  1 - - 2 C O 2 Z ~ q 2  COS 2co (7.2d) 
+ c~z 1 + coz z~ + 1 + 4co 2 z 2 sin 2cot + 1 + 4092 "c k 

Solution (7.2) is not the most general one. The initial conditions have not been incorporated; 
these initial conditions manifest themselves as coefficients of terms like exp ( - t/Zk) , t exp (-- t/rk), 
etc. For a stationary solution such terms are unimportant. 

Eq. (7.2) therefore gives the stationary solution for the moments of the distribution function 
of the normal modes. Substitution in (6.15) then gives the stationary solution for the distribution 
function of the normal modes. In limiting cases the literature already offers known solutions. 
For  c~ = 0 we have the solution of Hermans [8] ; for q = 0 the solution is given by Blatz [9]. 

7. Conclusion 

The distribution function of any normal mode can apparently be calculated for all forms of 
time-dependent fields of flow, the velocities being linear functions of the coordinates. The form 
of the distribution function is determined by the field of flow and by the parameters Zk. The 
values of these parameters are dependent on all kinds of refinements in the model (which 
affect z) and on the eigenvalues of the matrix AI o. However, if ~ is known, it is also possible to 
determine the velocities and thus the motion of the beads, by means of eq. (3.10) and by some 
reverse transformations [10]. 

Also the expectation values of all the quantities which are functions of the coordinates, can 
be calculated. Some simple measures of the average dimensions of the necklace in a flowing 
solution follow from Eq. (6.12). These second moments are simply related with the optical 
properties of the solution [5], [8], [10], [11]. Also the stresses arising in the solution can be 
expressed as expectation values of functions of coordinates [5], [8], [10], [11] and can there- 
fore be calculated as soon as the distribution function is known. 
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